README
¶
Jinja Template Engine Profiler
This tool helps identify performance bottlenecks in the Jinja template engine implementation.
Quick Start
Use the Makefile targets to run common profiling scenarios:
# Profile the complex_template with all profiling types
make profile-complex
# Profile the nested_loops template with all profiling types
make profile-nested-loops
# Profile all templates from the benchmark suite
make profile-all
# Run custom profiling
make profile ARGS="--template conditional --cpu --iterations 5000"
Manual Usage
You can also run the profile script directly:
./cmd/profile/profile.sh --template template_name [options]
Options
--template NAME: Profile a specific template from templates.json--iterations N: Number of iterations to run (default: 10000)--cpu: Enable CPU profiling--mem: Enable memory profiling--block: Enable block profiling--all: Enable all profiling types--all-templates: Run profiling for all templates--help: Show help message
Analyzing Results
Profiling results are saved to the profile_results/ directory. For each template, you'll find:
template.txt: The template that was profiledcontext.json: The context data usedprofile_output.txt: Text output from the profiling runcpu.prof,mem.prof,block.prof: Profile data files (if enabled)
Visualizing with pprof
To visualize the results in a web browser:
go tool pprof -http=:8080 profile_results/template_name/cpu.prof
This opens a web UI at http://localhost:8080 where you can explore:
- Top functions (CPU time, memory allocations)
- Flame graphs
- Call graphs
- Source code view with hotspots
Text-based Analysis
For text-based analysis:
go tool pprof profile_results/template_name/cpu.prof
# At the pprof prompt, try these commands:
(pprof) top10 # Show top 10 CPU-consuming functions
(pprof) list TemplateString # Show source with time spent in the TemplateString function
(pprof) list Parser.ParseNext # Show source with time spent in the ParseNext function
Common Performance Issues
When analyzing profiles, look for:
- Excessive Allocations: Check memory profiles for functions making many allocations.
- String Concatenation: Look for time spent in string handling operations.
- Recursive Parser Calls: Check for deep call stacks in parsing functions.
- Repeated Template Parsing: Templates should ideally be parsed once and cached.
- Expression Evaluation: Check for inefficient expression evaluation.
Optimization Opportunities
Based on profiling results, consider these optimization strategies:
- Cached templates: Implement template caching to avoid repeated parsing.
- Optimized parsing: Identify and optimize hotspots in the parser.
- Reduced allocations: Reuse buffers and preallocate when possible.
- Switch to token-based parsing: For complex templates, a tokenization step before parsing may be more efficient.
- Use sync.Pool: For frequently allocated objects (nodes, parsers, etc.).
- Context optimizations: Optimize variable lookups in context maps.
Documentation
¶
There is no documentation for this package.
Click to show internal directories.
Click to hide internal directories.